Oxford Cambridge and RSA

GCSE

Physics A

Unit J249H/03: Higher Tier - Paper 3
General Certificate of Secondary Education

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2018

Annotations available in RM Assessor

Annotation	Meaning
S	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
DO NOT ALLOW	Separates marking points
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
ECF	Underlined words must be present in answer to score a mark
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Physics:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures.
AO3.1	Analyse information and ideas to interpret and evaluate.
AO3.1a	Analyse information and ideas to interpret.
AO3.1b	Analyse information and ideas to evaluate.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3b	Analyse information and ideas to develop experimental procedures.

For answers to Section A if an answer box is blank ALLOW correct indication of answer e.g. circled or underlined.

Question		Answer		Marks	AO element	
1		C \checkmark	1	1.1		
2		A \checkmark	1	2.1		
3		D \checkmark	1	1.2		
4		B \checkmark	1	2.1		
5		D \checkmark	1	1.1		
6		B \checkmark	1	1.1		
7		A \checkmark	1	2.1		
8		D \checkmark	1	2.2		
9		C \checkmark	1	2.2		
10		B \checkmark	1	1.1		
11		A \checkmark	1	1.2		
12		D \checkmark	1	2.1		
13		B \checkmark	1	2.1		
14		A \checkmark	1	2.1		
15		C \checkmark	1	2.1		

Question			Answer	Marks	$\underset{\text { AO }}{\text { AO }}$	Guidance
16	(a)	(i)	variable resistor \checkmark	1	1.2	ALLOW rheostat IGNORE potentiometer
		(ii)	Control / change / vary / increase / decrease / AW the resistance / current in the circuit \checkmark	1	1.2	DO NOT ALLOW merely "changes the voltage or changes p.d.' BUT ALLOW: changes the potential difference or voltage across (component) \mathbf{X}
	(b)	(i)	(filament) bulb / lamp \checkmark	1	3.2a	
		(ii)	gradient / slope (of graph) changes (as potential difference / voltage changes) idea of increasing resistance (with more p.d.) / ORA \checkmark idea of increasing temperature / AW	3	$\begin{aligned} & 3.1 a \\ & 1.2 \\ & 2.2 \end{aligned}$	ALLOW 'graph / line / slope levels off' / non-linear Resistance increases with greater temperature
	(c)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=\mathbf{4}(\mathrm{V})$ award $\mathbf{2}$ marks $\begin{aligned} & 0.25 \times 16 \mathrm{~V} \\ & 4(\mathrm{~V}) \vee \\ & \hline \end{aligned}$	2	$\begin{aligned} & 2.1 \\ & 2.1 \\ & \hline \end{aligned}$	
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{1}(\mathrm{W})$ award 3 marks $\begin{aligned} & P=I V \checkmark \\ & P=0.25 \times 4 \checkmark \\ & P=1(W) \checkmark \end{aligned}$ OR $\begin{aligned} & \mathrm{P}=I^{2} \mathrm{R} \checkmark \\ & \mathrm{P}=0.25^{2} \times 16 \\ & \mathrm{P}=1(\mathrm{~W}) \checkmark \end{aligned}$	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \\ & \\ & \\ & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	ALLOW e.c.f. from part ci

Question			Answer	Marks	AO element	Guidance
17	(a)	(i)	Any three from: place the compass onto the card or near to the wire (and turn on the current) plot / observe the direction of the compass / needle repeat idea of tip-to-tail / plotting onto the card repeat at different distances from the centre	3	3×1.2	
		(ii)	one or more circles around wire \checkmark clockwise arrow(s)	2	2×2.2	DO NOT ALLOW a spiral BUT ALLOW if clockwise direction shown by an arrow on the spiral
	(b)		always points to North / South OR Points to (magnetic) North / South line up with the magnetic field lines of the Earth OR Compass needle shows (an angle of) dip \checkmark Dip (angle) changes (from equator)	2	2×1.1	ALLOW Points North / South wherever you are $\checkmark \checkmark$

Question			Answer	Marks	AO	Guidance
18	(a)		Rod attracts water - Opposite charges attract - water has both + and - charges / idea of polarisation / AW \checkmark	3	3×1.2	IGNORE positive electrons / movement of protons / ions for this answer. ALLOW Water bends or moves towards rod OR for candidates that have misinterpreted the diagram as repulsion of water then ALLOW Rod repels water / water bends or moves away from rod \checkmark - Like charges repel - water has both + and - charges / idea of polarisation / AW \checkmark
	(b)	(i)	potential difference closed or complete circuit \checkmark	2	2×1.1	IGNORE ions / charge ALLOW voltage ALLOW higher level answers eg. must have delocalised electrons / electrons that are free to move
		(ii)	FIRST CHECK THE ANSWERON ANSWER LINE If answer = 1500 (C) award 4 marks $\begin{aligned} & Q=I t \checkmark \\ & t=5 \times 60=300(\mathrm{~s}) \\ & Q=5 \times 300 \checkmark \\ & Q=1500(C) \checkmark \end{aligned}$	4	$\begin{aligned} & 1.1 \\ & 2.1 \\ & 2.1 \\ & 2.1 \end{aligned}$	

Question			Answer	Marks		Guidance
19	(a)	(i)	as the length of the wire increases the resistance increases / proportional relationship / ORA BUT idea of directly proportional	2	$2 \times 3.2 \mathrm{~b}$	IGNORE positive correlation Numerical answers must USE values rather than merely quoting values Eg. (approximately) doubling the length, doubles the resistance / ORA $\checkmark \checkmark$ Eg. Increases by 7 to 8Ω per $25 \mathrm{~cm} / 0.3 \Omega$ (allow 0.28 to 0.32) per $\mathrm{cm} \checkmark \checkmark$
		(ii)	mean for 25 cm (is recorded to 3 decimal places) and it should be recorded to one decimal place mean for 50 cm is incorrect and it should be 16.2Ω	2	2×3.3a	Error and a solution required for each marking point. ALLOW answer in terms of sig. figs: Eg. mean for 25 cm is recorded to 4 sig. figs. - it should be recorded to 2 sig. figs.
		(iii)	75 cm attempt 3 or 18.7 (is an anomaly) it has not been included in the mean	2	$2 \times 3.2 \mathrm{a}$	
		(iv)	straight line through the origin scores straight line / linear relationship / proportional and not through origin scores	2	$2 \times 3.1 \mathrm{a}$	ALLOW answers shown on a diagram ALLOW directly proportional $\checkmark \checkmark$ DO NOT ALLOW a curved line through origin IGNORE positive correlation (in written comments)

Question		Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
(b)	(i)	Any two from: (extra resistance due to) connecting leads too long / too thin \checkmark (extra) resistance of the croc clips / connections croc clip is not at $0 \mathrm{~cm} /$ the end of the ruler / length of resistance wire longer than intended / AW Heating effect of wires	2	$2 \times 3.1 \mathrm{~b}$	DO NOT ALLOW idea of less resistance Eg. Crocodile clips rusted / poor conductor / bad or loose connections IGNORE crocodile clips in wrong place unless qualified correctly. Eg. croc clips too far apart ALLOW Parallax error on meter (if it is analogue) / meter not calibrated (so resistance higher)
	(ii)	Any one from: make the connecting wires as short as possible keep croc clips clean / solder connections \checkmark place croc clip exactly at the end of the ruler / at $0 \mathrm{~cm} /$ AW \checkmark	1	3.3b	Solution needs to be consistent with an error identified in part i. OR a new specified error ALLOW: use thicker connecting wires ALLOW let wire(s) cool between readings / Securely fix croc clip / calibrate meter / avoid parallax error

Question			Answer	Marks	AO	Guidance
20	(a)	(i)	All three points correctly plotted OR two points correctly plotted	2	2×2.2	Points should be + / -1/2 square or less (by eye)
		(ii)	straight line up to $0.04,8$ and curved line consistent with points plotted past this point \checkmark	1	3.1a	ALLOW ecf from part ai for misplotted points ALLOW straight part of graph drawn without ruler. DO NOT ALLOW dot-to-dot for curve Single line should be thin (less than $1 / 2$ square thick) and continuous to gain the mark.
		(iii)	Initially the extension increases steadily / linearly / uniformly / (directly) proportionally / elastically / AW \checkmark (then the) wire reaches its elastic limit the extension increases plastically / by more for each (2N) weight added (past this point) / AW	3	$\begin{gathered} 3.1 \mathrm{a} \\ 1.2 \\ 3.1 \mathrm{a} \end{gathered}$	ALLOW gradient is steady up to 8 N ALLOW initially obeys Hooke's law IGNORE limit of proportionality (as this is an AO3 answer for an AO1 question) ALLOW Hooke's law not obeyed after 8 N
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $200(\mathrm{~N} / \mathrm{m})$ award 3 marks $k=F \div x v$ $\mathrm{k}=6 \div 0.03 \checkmark$ (or equivalent correct expression from 0 to 6N) $\mathrm{k}=200(\mathrm{~N} / \mathrm{m})$	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	IGNORE F=kx Substitution into correctly rearranged formula

Question		Answer	Marks	AO element	Guidance
(c)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.16(J)$ award 2 marks	$\mathbf{2}$		ALLOW ecf from part b	
$\mathrm{E}=0.16(\mathrm{~J}) \checkmark$	1.2	ALLOW area under graph method: $0.5 \times 8 \times 0.04 \checkmark$ BUT area under graph method used to calculate 0.16 scores $\checkmark \checkmark$			

	estion	Answer	Marks	$\begin{gathered} \mathrm{AO} \\ \text { element } \end{gathered}$	Guidance
$\begin{aligned} & 21 \\ & (*) \end{aligned}$	(a)	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) A detailed explanation of experimental procedure AND detailed discussion about accuracy There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) EITHER a detailed explanation of the experimental procedure OR detailed discussion about accuracy OR a brief explanation of the experimental procedure and simple discussion about accuracy There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Brief explanation of the experimental procedure OR simple comment about accuracy There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{gathered} \hline 2 \times 2.2 \\ 2 \times 3.3 \mathrm{a} \\ 2 \times 1.2 \end{gathered}$	AO1.2 and AO2.2 Applies knowledge and understanding of how to use the equipment to find specific latent heat of water. For example: - Measure the initial mass / weight of beaker - Turn on the heater - Start timing - Use the voltmeter, ammeter and stopclock to calculate the energy supplied ($\mathrm{E}=\mathrm{V} / \mathrm{t}$) - Turn off the heater - Stop timing - Use a balance to measure the mass of the beaker and melted ice - Subtract the original mass of the beaker to find the mass / weight of the melted ice / calculate mass / weight of melted ice - Calculate specific latent heat by dividing energy by mass AO3.3a Analyses information and ideas to develop experimental procedures and consider accuracy of the experiment. For example: - Make sure that the heater is always covered with ice - Insulate / put lid on the funnel to reduce heat losses - Make sure that the mass of water produced is sufficiently large - run the experiment for long enough - Repeat the experiment to minimise (random) errors

Question	Answer	Marks	AO element	Guidance
(b)	```FIRST CHECK THE ANSWER ON ANSWER LINE If answer \(=380000(\mathrm{~J})\) award 3 marks SLH \(=\mathrm{E} \div \mathrm{m}\) \(=95000 \div 0.25\) \(=380000(\mathrm{~J} / \mathrm{kg})\)```	3	1.2 2.1 2.1	Rearranging equation $95 \div 250$ or 0.38 scores \checkmark (evidence of rearranged formula) $\begin{array}{\|l} 95000 \div 250=380 \text { scores } \\ \text { Or } 95 \div 0.25=380 \checkmark \checkmark \\ \text { Or } 380 \checkmark \checkmark \end{array}$

Question			Answer	Marks	$\underset{\text { AO }}{\text { AOMent }}$	Guidance
22	(a)		momentum kinetic energy or KE	2	2×1.1	IGNORE mass conserved If more than two answers mark the first two answers (unless one of them is mass). Eg 'KE, mass, momentum $\checkmark \checkmark$ Eg. PE, KE, momentum
	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINES If answers $=8.4(\mathrm{kgm} / \mathrm{s})$ and $6.75 / 6.8(\mathrm{kgm} / \mathrm{s})$ award 3 marks 2×4.2 2.5×2.7 A: 8.4 (kgm/s) B: $6.75 / 6.8$ ($\mathrm{kgm} / \mathrm{s}$)	3	$\begin{aligned} & 1.2 \\ & 2.2 \\ & 2.2 \end{aligned}$	8.4 and 6.7 scores $\checkmark \checkmark$ (incorrect rounding of one of the values)
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $3.4(\mathrm{~m} / \mathrm{s})$ award 3 marks $(8.4+6.75) \div 4.5$ 3.37 / 3.366666667 (m) 3.4 (rounding to 2 sf)	3	$\begin{gathered} 2.2 \\ 2.2 \\ 1.2 \end{gathered}$	ECF for momentum values eg. $(A+B) \div 4.5$ Wrong answer but evidence of correct rounding Eg. 6.75 to $6.8 \checkmark$

Question			Answer	Marks	AO element	Guidance
23	(a)	(i)	initial speed is zero and - either acceleration due to gravity $=10$ - \quad or $g=10 \checkmark$ use $\mathrm{a}=(\mathrm{v}-\mathrm{u}) \div \mathrm{t}$ to find the final speed $/ \mathrm{v} \checkmark$ use $v^{2}-u^{2}=2$ as to find $s \checkmark$	3	3×1.1	IGNORE the idea of echoes and speed of sound ALLOW answers using g = 9.8 or 9.81 ALLOW $\mathrm{v}=\mathrm{u}+\mathrm{at}$ ALLOW credit for higher level answers: Eg. three marks for answer in terms of $s=u t+1 / 2 a t^{2}$
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 22 (m/s) award 2 marks $10=v(-0) / 2.2$ OR uses idea that stone gains $10 \mathrm{~m} / \mathrm{s}$ each second $V=22(\mathrm{~m} / \mathrm{s})$	2	2×2.1	ALLOW 21.56 or 21.58 or 21.6 (if $\mathrm{g}=9.8$ or 9.81)

Quest	Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
(b)	only 2 arrows drawn or directions of the two forces described - one upwards and one downwards Correctly names weight and air resistance / drag downward arrow longer than upward arrow / forces are unbalanced / resultant / net / overall force downwards \checkmark so object accelerates / gets faster / increases velocity or speed \checkmark	4	2.1 1.1 2.1 1.1	Award marks for answer points given in diagrams or prose. ALLOW force of gravity or mg or gravitational pull for weight BUT DO NOT ALLOW merely 'gravity' IGNORE upthrust for this marking point only Drag / air resistance (3 marks) Weight or force of gravity

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

